
Debugging in AnyLogic

Nathaniel Osgood

CMPT 858

4-5-2011

Avoiding Debugging

• Defensive Programming

• Offensive Programming

Offensive Programming: Try to Get Broken
Program to Fail Early, Hard

• Asserts: Actually quit the program

• Fill memory allocated with illegal values

• Fill object w/illegal data just before deletion

• Set buffers at end of heap, so that overwrites
likely trigger page fault

• Setting default values to be illegal in enums

• We will talk about Assertions & Error Handling
later this week

Assertion Goal: Fail Early!

• Alert programmer to misplaced assumptions as
early as possible

• Benefits

– Documents assumptions

– Reduces likelihood that error will slip through

• Helps discourage “lazy” handling of only common case

• Forces developer to deal explicitly with bug before
continuing

– Reduces debugging time

– Helps improve thoroughness of tests

Avoid Side Effects in Assertions

• Because assertions may be completely
removed from the program, it is unsafe to rely
on side effects occuring in them

Arnold et al. The Java Programming Language, Fourth Edition. 2006.

Enabling Assertions in AnyLogic

Enabling Assertions in Java

• 2 ways

– Usual: Via java runtime command line

• e.g.

– Less common: via reflection (ClassLoader)

Arnold et al. The Java Programming Language, Fourth Edition. 2006.

Debugging AnyLogic

• Debugging is the process of locating the faults
behind observed failures

• AnyLogic’s education now contains a debugger

• You can attach to AnyLogic from debuggers
such as eclipse

– The key thing is to set anylogic to use a port

Debugging Options

• Using output for manual tracing & reporting

• Using AspectJ & tracing

• Using an external debugger (e.g. via eclipse)

• Using AnyLogic Professional/Research
debugger

Using output for manual tracing &
reporting

• Pros
– Minimal learning curve

– Flexible

– Easily targeted

• Cons
– Requires time-consuming manual

• “markup”

• de-markup

– Can require many build/simulation iterations to
localize problem

– Limited capacity of console

Output to the Console: How To

• System.err.println(String)

– System.err.println("Sent cure message to person ["
+ associatedPerson + "]");

• traceln(String)

• System.out.println(String)

Use in AnyLogic

AspectJ and Eclipse

• AspectJ is a language that allows for succinctly
describing “cross cutting” functionality in
programs – such as tracing or logging requests

• AspectJ can automatically insert tracing
instrumentation into our code

– This gives us many of the benefits of manual tracing
program execution without the need for the markup
& mark-down work

AnyLogic Built-in Debugger

Running the Debugger

Running the Models

Setting a Breakpoint

When we Hit the Breakpoint…

Components to Direct Execution

Visible (“In-Scope”) Variables

Exploring Composite Variable Values in
the Debugger

Inspecting Composite Variables

Changing Variable Values During
Debugging

Stepping into Auto-Generated Code

Seeing Result of Expression Evaluation

Note that this doesn’t update immediate – may
need to switch stack frames in the “Debug” method
To see the update

External Debugging in Eclipse

• The “Eclipse” editor is one of the most
popular extant software development tools

• Eclipse offers plug-ins of many sorts

– Debuggers

– Profilers

– Visualization tools

– Version control of models

• Eclipse can be used to debug AnyLogic models
at the Java source-code level

Steps Required for Eclipse Debugging

• One time set-up for a particular model

– Set up AnyLogic to allow debugging connections

– Set up Eclipse to know

• How to connect to AnyLogic

• Where to look for source code files

• Every time want to debug

– Go to Eclipse

– Tell debugger to connect to AnyLogic process

– Interrupt process

– Set breakpoints, etc.

Setup In AnyLogic

• -Xdebug -Xnoagent -Djava.compiler=NONE -
Xrunjdwp:transport=dt_socket,server=y,suspe
nd=n,address=8321

• These go under the "Advanced" tab of the
simulation run to use

Set up: Creating a Debugging
Configuration in Eclipse

Setting Up Source Code Folders

Add Source Folder

Once Set up, Can…

• Set breakpoints

• See the variables, with symbolic information

• Suggestions

– Set a breakpoint on a thrown runtime exception
(regardless of whether caught)

– Throw a caught runtime exception from model
startup code

– When catch this in Eclipse, can then use to set
breakpoints (including in other files)

Example Setup: Set up Function to
Trigger the Debugger

In Startup Code for Model, Call Function

In Eclipse, Open “Debug” Perspective

Request Creation of Exception Breakpoint

Request as Breakpoint Regardless of
Handling

Should Now be in List of Enabled Breakpoints

Start AnyLogic Model (Experiment
with Extra Debugging JVM Arguments)

Leave on Opening Screen for Now
(So We can Set up Eclipse)

Go To Eclipse & Request AnyLogic Debugging
Debug Configuration (previously set up)

Should Immediately See Something Like This

Return to AnyLogic & Start Simulation
via Button Push

Back in Eclipse, the Debugger Should
have been Triggered & at Exception Handler

(If not, close “Main.java” and double-click on topmost “stack frame” (Where Exception is triggered))

Now Can Set Breakpoints in Main.java
or Elsewhere (Here: Person.java)

Warning: Breakpoints are Not
Shown in Source Window – Just in

“Breakpoints” area

Press “Resume” to Continue –
Awaiting a Breakpoint

Example Breakpoint in Main

Example Breakpoint in Person

Once at Breakpoint, Can Look at
Variables, Single Step, etc.

Variables Displayed

Terminating Execution from AnyLogic Console

Eclipse is Now Detached

Remembering Breakpoints

• Note Eclipse does remember breakpoints from
session to session

• So breakpoints that set earlier in an anylogic
session will work again even after close eclipse
and restart it again

• Suggestions
– Consider creating a common breakpoints (e.g. at

Main.start)

– Disable and enable breakpoints rather than deleting
them

Example of Debugging Session

